
Linearizability and State-Machine Replication
Franz J. Hauck
Alexander Heß

franz.hauck@uni-ulm.de
alexander.hess@uni-ulm.de

Ulm University
Germany

SHORT ABSTRACT
Linearizability is a well-known and popular correctness criterion
for concurrent and distributed systems [3, 6]. It combines atomic
execution of invocations or request executions with real time, i.e.
if an invocation is completed, its effect has to be seen by freshly
submitted invocations. For distributed systems, linearizability guar-
antees that the system behaves like a non-distributed but likely
concurrent system. This makes linearizability a good candidate for
proving distributed systems correct.

State-machine replication (SMR) was first sketched by Lam-
port [4], but the tutorial written by Schneider [5] is probably the
most cited fundamental work about SMR. SMR achieves fault tol-
erance by replicating a service on multiple nodes in a distributed
system. Each replica gets the same client requests—typically in the
same total order—and executes them deterministically. This ensures
that all correct replicas have eventually the same state, and can
replace each other in case of faults. SMR is even suitable for the
Byzantine failure model (BFT) that allows for almost any faulty
behaviour in a defined subset of the total number of replicas.

Linearizability was extensively used in the past to prove SMR
system correct. For example, the seminal work about the first practi-
cal implementation for BFT SMR by Castro [2] takes linearizability
as the correctness property of choice.

In this presentation, we argue that linearizability is too strict.
Services that need to use conditional waits to coordinate inter-
nal resources and block their threads are no longer linearizable.
Likewise, nested invocation, i.e. replicated services that call other
replicated or non-replicated services, are no longer linearizable—
at least as long as a harsh set of preconditions is not fulfilled. If
concurrently executing threads communicate in both directions,
the implementation is not linearizable. Although linearizability is
perfect for data-oriented systems that basically comprise read and
write operations, it is not for many others.

We will suggest a different correctness criterion for SMR namely
interval linearizability [1] and show that it can cover all those
applications that linearizability cannot. We further sketch how
SMR systems can be proved correct given that the application code
is already proven to be linearizable or interval linearizable.

REFERENCES
[1] Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. 2018. Unifying Con-

current Objects and Distributed Tasks: Interval-Linearizability. J. ACM 65, 6 (Nov.
2018), 45:1–45:42. https://doi.org/10.1145/3266457

[2] Miguel Castro. 2001. Practical Byzantine Fault Tolerance. Ph.D. MIT.
[3] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: a correctness

condition for concurrent objects. ACM Transactions on Programming Languages
and Systems 12, 3 (July 1990), 463–492. https://doi.org/10.1145/78969.78972

[4] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 7 (July 1978), 558–565. https://doi.org/10.1145/359545.

359563
[5] Fred B. Schneider. 1990. Implementing fault-tolerant services using the state

machine approach: a tutorial. Comput. Surveys 22, 4 (1990), 299–319. https:
//doi.org/10.1145/98163.98167

[6] Gal Sela, Maurice Herlihy, and Erez Petrank. 2021. Linearizability: A Typo. In
Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing.
561–564. https://doi.org/10.1145/3465084.3467944 arXiv:2105.06737 [cs].

https://orcid.org/0000-0002-7480-9617
https://orcid.org/0000-0001-6837-2861
https://doi.org/10.1145/3266457
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/3465084.3467944

	References

