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SHORT ABSTRACT
Linearizability is a well-known and popular correctness criterion
for concurrent and distributed systems [3, 6]. It combines atomic
execution of invocations or request executions with real time, i.e.
if an invocation is completed, its effect has to be seen by freshly
submitted invocations. For distributed systems, linearizability guar-
antees that the system behaves like a non-distributed but likely
concurrent system. This makes linearizability a good candidate for
proving distributed systems correct.

State-machine replication (SMR) was first sketched by Lam-
port [4], but the tutorial written by Schneider [5] is probably the
most cited fundamental work about SMR. SMR achieves fault tol-
erance by replicating a service on multiple nodes in a distributed
system. Each replica gets the same client requests—typically in the
same total order—and executes them deterministically. This ensures
that all correct replicas have eventually the same state, and can
replace each other in case of faults. SMR is even suitable for the
Byzantine failure model (BFT) that allows for almost any faulty
behaviour in a defined subset of the total number of replicas.

Linearizability was extensively used in the past to prove SMR
system correct. For example, the seminal work about the first practi-
cal implementation for BFT SMR by Castro [2] takes linearizability
as the correctness property of choice.

In this presentation, we argue that linearizability is too strict.
Services that need to use conditional waits to coordinate inter-
nal resources and block their threads are no longer linearizable.
Likewise, nested invocation, i.e. replicated services that call other
replicated or non-replicated services, are no longer linearizable—
at least as long as a harsh set of preconditions is not fulfilled. If
concurrently executing threads communicate in both directions,
the implementation is not linearizable. Although linearizability is
perfect for data-oriented systems that basically comprise read and
write operations, it is not for many others.

We will suggest a different correctness criterion for SMR namely
interval linearizability [1] and show that it can cover all those
applications that linearizability cannot. We further sketch how
SMR systems can be proved correct given that the application code
is already proven to be linearizable or interval linearizable.
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