
Blazingly Fast BFT Consensus with MERCURY

Christian Berger† Lı́vio Rodrigues⋆ Hans P. Reiser‡,† Vinı́cius Cogo⋆ Alysson Bessani⋆

⋆LASIGE, Faculdade de Ciências Universidade de Lisboa, Portugal
†University of Passau, Germany ‡Reykjavik University, Iceland

Abstract—Blockchain technology has renewed interest in
planetary-scale Byzantine fault-tolerant (BFT) state machine
replication (SMR). While recent works focus on scalability
and throughput, few address latency. We present the idea of
MERCURY, a transformation for quorum-based BFT consensus
that uses an adaptive resilience threshold. MERCURY employs
adaptive weighted replication to assign high voting power to
specific replicas, thus yielding smaller quorums that speed up
consensus. To maintain SMR safety and liveness guarantees with
optimal resilience, MERCURY employs two modes of operation
and BFT forensics. Experiments with replicas worldwide show
MERCURY finalizes client requests in less than 0.4 s, half the time
needed by a PBFT-like protocol with optimal consensus latency.

I. INTRODUCTION

State machine replication (SMR) is an approach to tolerate
faults in distributed systems by coordinating client interactions
with a set of n independent replicas [1]. Recently, many scal-
able (BFT) SMR protocols have emerged for blockchain in-
frastructures, such as HotStuff [2], SBFT [3], Tendermint [4],
Mir-BFT [5], RedBellyBC [6], Kauri [7], IA-CCF [8], and
the Dumbo family [9], [10]. These protocols employ some
dynamically elected leader [2]–[4], [7], [11], use multiple
leaders [5], [12], or are leaderless [6], [10], [13], [14].

Nevertheless, the consensus in all these cases requires
communication involving a quorum of replicas under the
assumption that the adversary controls no more than a fixed
resilience threshold of t = ⌊n−1

3 ⌋ replicas. Often, the quorum
size for proceeding to the next protocol stage depends on this
threshold, a Byzantine t-dissemination quorum with ⌈n+t+1

2 ⌉
replicas [15]. This size equals roughly 2

3 of all replicas if
an optimal resilience threshold is used. For geo-replicated or
planetary-scale systems like permissioned blockchains (e.g.,
[6], [16]) with tens of nodes distributed worldwide, optimizing
end-to-end client latency is challenging for two reasons. First,
theoretical lower bounds define that at least three communica-
tion steps are required for reaching consensus without giving
up the optimal resilience [17], [18]. Second, there are physical
limits that bound link transmission speed to a fraction of the
speed of light (e.g., 0.67c [19]). Improving throughput, on
the other hand, is a much more popular objective that can
be achieved by parallelizing/distributing tasks (e.g., [6], [14]),
improving bandwidth usage (e.g., [20]), or simply by using a
better infrastructure (e.g., better links). Nonetheless, the goal
of globally ordering transactions in a fraction of a second is
still far from existing systems [21].

Using smaller quorums of closer replicas can significantly
decrease SMR latency [22], [23]. The challenge lies in ensur-

(a) Weighted quorums sizes with t = 6 and t = 3.

6543
0

50
100
150
200
250
300

Threshold t

L
at

en
cy

[m
s]

(b) Consensus latency
vs. resilience threshold.

São Paulo
London

Osaka
Virginia

0
100
200
300
400
500
600

L
at

en
cy

[m
s]

t = 6 t = 3

(c) End-to-end transaction latencies
observed by clients in different regions.

Fig. 1: Weighted quorums composition and resulting BFT
SMR latency for different resilience thresholds (t) in our
n = 21 AWS setup.

ing these smaller, faster quorums intersect in sufficiently many
replicas with all other quorums of the system. Such smaller,
intersecting quorums can be built using weighted replication,
giving faster replicas more voting power.

II. IMPROVING LATENCY WITH COMPACT QUORUMS

Figure 1 illustrates how a geo-replicated system can
progress faster with smaller quorums. It considers a weighted
system [23] with n = 21 replicas dispersed across all 21 AWS
regions (see Figure 1a). When configured for maximum re-
silience, this system tolerates up to t = 6 Byzantine replicas
(the highest integer satisfying t < n

3 ) with ∆ = 2 spare repli-
cas. The smallest weighted consensus quorum Q6

v contains
13 replicas, only one replica less than using non-weighted
replication. Alternatively, when configured for t = 3 failures,
the smallest weighted quorum Q3

v contains only 7 replicas,
with ∆ = 11. This quorum can comprise closer replicas that
can exchange votes with each other faster, accelerating the
consensus protocol stages (see Figure 1b) and resulting in end-
to-end latency improvements around the globe (see Figure 1c).

III. MERCURY DESIGN

MERCURY offers dynamic self-optimization during runtime
by adjusting the resilience threshold and modifying weights



Asia-Pacific
North America

South America Africa Europe Oceania
Middle East

0
100
200
300
400
500
600
700
800 BFT-SMART/PBFT at 1c at 0.67c

L
at

en
cy

[m
s]

BFT-SMART/PBFT AWARE MERCURY: final strong weak first

(a) End-to-end latencies observed by clients in protocol executions with BFT-SMaRt, AWARE, and MERCURY.
Client results are averaged over all regions per continent.

0
50

100
150
200
250
300
350
400

Protocol

L
at

en
cy

[m
s]

BFT-SMART/PBFT

AWARE

MERCURY

(b) Consensus latency.

Fig. 2: Achievable latency gains for the n = 21 AWS setup.

to facilitate the formation of smaller consensus quorums,
resulting in lower latencies. To accomplish this, it pursues
the best of both worlds: preserving the system’s maximum
resilience through the use of diagnosis and repair, ensuring
system consistency, while consistently striving to expedite
consensus instances by optimizing the system for the expected
common scenario with minimal or no failures. This dual ap-
proach is realized through two modes of operation, inspired by
related methods for enhancing performance [24] and resource
efficiency [25] of replicated state machines.

The system starts in conservative mode, where it runs
instances of a quorum-based consensus protocol capable of
tolerating t failures. After a specific number of successfully
completed consensus instances, the system transitions to the
fast mode, characterized by a more optimistic setup that can
tolerate only tfast failures. In this fast mode, as long as the
leader remains correct and the actual failures stay within the
threshold tfast , MERCURY continues to use smaller quorums,
expediting the completion of consensus. However, should
the observed latency gains fall short of expectations, if the
leader is found to be faulty, or if correct replicas identify
inconsistencies, MERCURY switches back to the conservative
mode. For instance, SMR liveness can be endangered if the
protocol operates with a lower threshold tfast < t and there
are f > tfast Byzantine replicas that stay silent. To avoid this
scenario, we utilize two distinct modes of operation: If the
system blocks or equivocates, we abort the execution of the
fast mode of MERCURY and start a more resilient protocol
instance, which uses the maximum resilience threshold t.

A key insight of our work is that we can utilize BFT
protocol forensics [26] in a novel way. Instead of using it
as a forensic tool to investigate the “day after”, we leverage
it as a protective countermeasure against equivocations. In
BFT protocol forensics, the client is the one who detects
conflicting values based on replicas’ logged signed messages
and pinpoints equivocating replicas. In MERCURY, the respon-
sibility of detecting faulty replicas is imposed on all correct
replicas so the system can autonomously detect and expel
equivocating parties. Using tfast = ⌈ t

2⌉ guarantees that audits
are always supported for up to t faulty replicas. The system
addresses violations by removing identified violators from the

system and restoring correct replicas’ divergent decisions to
a consistent state. This continuous auditing serves as both
a means of recovery and a deterrent against attacks, as it
identifies and expels perpetrators from the system.

However, the possibility of rolling back decisions on repli-
cas introduces a challenge. It may result in the undoing of op-
eration outcomes observed by clients, impacting the durability
of these operations. To resolve this, we increase the matching
reply requirements of clients so that clients can determine
when an operation is considered completed in the system (and
survives a rollback), guaranteeing linearizability [27].

We further extend the programming model of BFT SMR
with Byzantine Correctables that allow client applications to
use incremental consistency guarantees [28], which simplifies
and abstracts client-side speculation. Clients can lower their
operation latency even further using this abstraction.

IV. PRELIMINARY RESULTS

We use c5.xlarge instances on the AWS cloud for deploying
a client and a replica in each of the n = 21 AWS regions
(depicted in Figure 1a). All clients send 400-bytes requests
simultaneously and continuously. Finally, request latency is
the average end-to-end protocol latency computed by a client
after completing all operations. For a better exposition, we
group the 21 clients’ results by the continent they are located
in, reporting only their regional averages (see Figure 2).

First, we observe that MERCURY significantly accelerates
consensus, leading to a speedup of 3.57× faster decisions.
Second, accelerating consensus decisions also leads to faster
request latencies observed by clients worldwide (see Fig-
ure 2). Averaged over all client regions, MERCURY leads to
a speedup of 1.87× over BFT-SMART for clients’ observed
end-to-end request latencies with finalization (a competitive
protocol AWARE [29], which uses only leader and weight
optimization but no threshold adaption leads to 1.33× only).
Our results also show that even higher speedups can be
achieved by employing the incremental consistency levels
of MERCURY’s implementation of Byzantine Correctables.
Furthermore, MERCURY can often achieve a similar latency
as running its base protocol on theoretically optimal internet
links (transmitting at 67% of the speed of light).



REFERENCES

[1] F. B. Schneider, “Implementing fault-tolerant services using the state ma-
chine approach: A tutorial,” ACM Computing Surveys (CSUR), vol. 22,
no. 4, pp. 299–319, 1990.

[2] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: BFT consensus with linearity and responsiveness,” in Proc. of
the 38th ACM Symp. on Principles of Distributed Computing (PODC).
New York, NY, USA: Association for Computing Machinery, 2019, pp.
347–356.

[3] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Reiter,
D.-A. Seredinschi, O. Tamir, and A. Tomescu, “SBFT: a scalable and
decentralized trust infrastructure,” in Proc. of the 49th Annual IEEE/IFIP
Int. Conf. on Dependable Systems and Networks (DSN). IEEE, 2019,
pp. 568–580.

[4] D. Cason, E. Fynn, N. Milosevic, Z. Milosevic, E. Buchman, and
F. Pedone, “The design, architecture and performance of the Tendermint
blockchain network,” in Proc. of the 40th IEEE Int. Symp. on Reliable
Distributed Systems (SRDS). IEEE, 2021, pp. 23–33.

[5] C. Stathakopoulou, T. David, and M. Vukolić, “Mir-BFT: High-
throughput BFT for blockchains,” 2019.

[6] T. Crain, C. Natoli, and V. Gramoli, “Red Belly: A secure, fair and
scalable open blockchain,” in Proc. of the 42nd IEEE Symp. on Security
and Privacy (S&P). IEEE, 2021, pp. 466–483.

[7] R. Neiheiser, M. Matos, and L. Rodrigues, “Kauri: Scalable BFT
consensus with pipelined tree-based dissemination and aggregation,” in
Proc. of the 28th ACM SIGOPS Symp. on Operating Systems Principles
(SOSP). New York, NY, USA: Association for Computing Machinery,
2021, pp. 35–48.

[8] A. Shamis, P. Pietzuch, B. Canakci, M. Castro, C. Fournet, E. Ashton,
A. Chamayou, S. Clebsch, A. Delignat-Lavaud, M. Kerner, J. Maffre,
O. Vrousgou, C. M. Wintersteiger, M. Costa, and M. Russinovich, “IA-
CCF: Individual accountability for permissioned ledgers,” in Proc. of the
19th USENIX Symp. on Networked Systems Design and Implementation
(NSDI). Berkeley, CA: USENIX Association, 2022, pp. 467–491.

[9] Y. Lu, Z. Lu, and Q. Tang, “Bolt-Dumbo transformer: Asynchronous
consensus as fast as pipelined BFT,” in Proc. of the 29th ACM Confer-
ence on Computer and Communications Security (CCS). New York,
NY, USA: Association for Computing Machinery, 2022, pp. 2159–2173.

[10] Y. Gao, Y. Lu, Z. Lu, J. X. Qiang Tang, and Z. Zhang, “Dumbo-NG:
Asynchronous consensus with throughput-oblivious latency,” in Proc. of
the 29th ACM Conference on Computer and Communications Security
(CCS). New York, NY, USA: Association for Computing Machinery,
2022, pp. 1187–1201.

[11] X. Sui, S. Duan, and H. Zhang, “Marlin: Two-phase bft with linearity,” in
Proc. of the 52nd Annual IEEE/IFIP Int. Conf. on Dependable Systems
and Networks (DSN). IEEE, 2022, pp. 54–66.

[12] S. Alqahtani and M. Demirbas, “BigBFT: A multileader Byzantine
fault tolerance protocol for high throughput,” in Proc. of the IEEE Int.
Performance, Computing, and Communications Conference (IPCCC).
IEEE, 2021, pp. 1–10.

[13] K. Antoniadis, A. Desjardins, V. Gramoli, R. Guerraoui, and I. Zablotchi,
“Leaderless consensus,” in Proc. of the 41st IEEE Int. Conf. on Dis-
tributed Computing Systems (ICDCS). IEEE, 2021, pp. 392–402.

[14] H. Zhang and S. Duan, “Pace: Fully parallelizable bft from repropos-
able byzantine agreement,” in Proc. of the 29th ACM Conference on
Computer and Communications Security (CCS). New York, NY, USA:
Association for Computing Machinery, 2022, pp. 3151–3164.

[15] D. Malkhi and M. Reiter, “Byzantine quorum systems,” Distributed
computing, vol. 11, no. 4, pp. 203–213, 1998.

[16] E. Androulaki et al., “Hyperledger Fabric: a distributed operating system
for permissioned blockchains,” in Proc. of the 13th European Conference
on Computer Systems (EuroSys). New York, NY, USA: Association
for Computing Machinery, 2018.

[17] J.-P. Martin and L. Alvisi, “Fast Byzantine consensus,” IEEE Transac-
tions on Dependable and Secure Computing (TDSC), vol. 3, no. 3, pp.
202–215, 2006.

[18] P. Kuznetsov, A. Tonkikh, and Y. X. Zhang, “Revisiting optimal re-
silience of fast Byzantine consensus,” in Proc. of the 40th ACM Symp.
on Principles of Distributed Computing (PODC). New York, NY, USA:
Association for Computing Machinery, 2021, pp. 343–353.

[19] K. Kohls and C. Diaz, “Verloc: Verifiable localization in decentralized
systems,” in Proc. of the 31st USENIX Security Symp. (USENIX Secu-
rity). Berkeley, CA: USENIX Association, 2022, pp. 2637–2654.

[20] C. Stathakopoulou, M. Pavlovic, and M. Vukolić, “State machine replica-
tion scalability made simple,” in Proc. of the 17th European Conference
on Computer Systems, 2022, p. 17–33.

[21] V. Gramoli, R. Guerraoui, A. Lebedev, C. Natoli, and G. Voron, “Diablo:
A benchmark suite for blockchains,” in Proc. of the 18th European
Conference on Computer Systems, 2023, p. 540–556.

[22] F. Junqueira, Y. Mao, and K. Marzullo, “Classic Paxos vs. fast Paxos:
caveat emptor,” in Proceedings of USENIX Hot Topics in System
Dependability (HotDep). Berkeley, CA: USENIX Association, 2007.

[23] J. Sousa and A. Bessani, “Separating the wheat from the chaff: An
empirical design for geo-replicated state machines,” in Proc. of the 34th
IEEE Int. Symp. on Reliable Distributed Systems (SRDS). IEEE, 2015,
pp. 146–155.

[24] P.-L. Aublin, R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić,
“The next 700 BFT protocols,” ACM Transactions on Computer Systems
(TOCS), vol. 32, no. 4, pp. 1–45, 2015.

[25] T. Distler, C. Cachin, and R. Kapitza, “Resource-efficient Byzantine fault
tolerance,” IEEE Transactions on Computers (TC), vol. 65, no. 9, pp.
2807–2819, 2015.

[26] P. Sheng, G. Wang, K. Nayak, S. Kannan, and P. Viswanath, “BFT
protocol forensics,” in Proc. of the 28th ACM Conference on Computer
and Communications Security (CCS). New York, NY, USA: Association
for Computing Machinery, 2021, pp. 1722–1743.

[27] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in Proc.
of the 3rd Symp. on Operating Systems Design and Implementation
(OSDI). Berkeley, CA: USENIX Association, 1999, pp. 173–186.

[28] R. Guerraoui, M. Pavlovic, and D.-A. Seredinschi, “Incremental consis-
tency guarantees for replicated objects,” in Proc. of the 12th USENIX
Symp. on Operating Systems Design and Implementation (OSDI).
Berkeley, CA: USENIX Association, 2016, pp. 169–184.

[29] C. Berger, H. P. Reiser, J. Sousa, and A. N. Bessani, “AWARE: Adaptive
wide-area replication for fast and resilient Byzantine consensus,” IEEE
Transactions on Dependable and Secure Computing (TDSC), vol. 19,
no. 3, pp. 1605–1620, 2022.


	Introduction
	Improving Latency with Compact Quorums
	Mercury Design
	Preliminary Results
	References

