
Memory-Efficient Byzantine Fault-Tolerant
Replication for Highly Resource-Constrained Systems

Harald Böhm
hboehm@cs.fau.de

Friedrich-Alexander-Universität Erlangen-Nürnberg

Tobias Distler
distler@cs.fau.de

Friedrich-Alexander-Universität Erlangen-Nürnberg

ABSTRACT
Recently, possible application scenarios of Byzantine fault
tolerant (BFT) state-machine replication have been expanded
to include highly resource-constrained nodes, with RAM of
1MB of or less. As memory is a scarce resource, using it effi-
ciently is of utmost importance. In this paper, we show that
the upper bound for memory demand of the PBFT protocol
reported by previous work can be improved even further, by
applying additional optimizations.

1 INTRODUCTION
Byzantine fault tolerant (BFT) state-machine replication is a
powerful tool, offering resilience against arbitrary faults. Tra-
ditionally, research has been focused on server-grade hard-
ware [1, 3, 6, 5, 8, 9]. While there exists prior work exploring
replication on embedded systems, most of it has targeted
larger general-purpose platforms like the Raspberry Pi [4, 11].
More recently, however, we have made efforts to expand use-
cases of this technology to tiny devices, such as system-on-
chip platforms.The result of this work is TinyBFT [7], a state-
machine replication library for highly resource-constrained
systems based on the PBFT protocol.
The term highly resource-constrained here refers to repli-

cated systems consisting of a number of nodes that only have
a very limited amount of RAM, typically 1 MB or less. Pos-
sible examples include the ESP32-C3 with a 160MHz MCU
and 400KB RAM [10]. In order to run the consensus proto-
col, nodes are equipped with transceivers, allowing them to
communicate with each other over a partially synchronous
network.

Employing BFT state-machine replication on these tiny de-
vices offers the benefit of improved resilience directly where
data is created in computing infrastructures of the Internet-
of-Things (IoT). This opens up a number of new use-case
scenarios, including self-sufficient control applications based
on distributed key-value stores or blockchain-based record-
ing of sensor data [7].

2 PROBLEM STATEMENT
Improving memory efficiency of BFT state-machine solu-
tions without degrading their performance is crucial when

referring to highly resource-constrained devices. In this con-
text, as a first step it is necessary to significantly shrink down
the memory footprint of replication protocols. Traditional
implementations have been running on hardware with RAM
orders of magnitude larger than on the devices targeted here
(e.g., [3, 4, 6, 9, 11]). Hence, memory demand has been a
negligible factor in their design.
However, merely reducing memory demand to the point

were a replication library is small enough to fit into the
hardware’s RAM is not sufficient in practice. Further im-
provements can have beneficial effects on system perfor-
mance and energy consumption, because the already scarce
amount of available RAM has to be shared with a number of
other software components. This can make certain trade-offs
necessary. In particular, device drivers for transceivers (e.g.
WiFi) typically store incoming and outgoing packets to a
fixed amount of buffers in RAM. If all available buffers are
occupied, packets are dropped, making expensive retrans-
missions necessary. Hence, reducing the memory footprint
of the replication library frees up space that can be used for
additional packet buffers, leading to fewer dropped pack-
ets and, consequently, fewer retransmissions. Conversely,
over-approximating the maximum memory demand of the
replication library can leave less space for other parts of the
system and, therefore, lead to degraded performance.
While [7] has layed a solid foundation by providing an

upper bound for PBFT’s [9] memory demand and implement-
ing TinyBFT, we show that there is still room for further
improvement. More specifically, the memory demand of cer-
tificates can be reduced.Thus, our paper makes the following
contribution: we outline two additional optimizations related
to certificates that reduce TinyBFT’s maximum memory de-
mand.

3 APPROACH
As our approach aims at reducing memory demand of cer-
tificates, we give a brief description of their structure and
purpose in PBFT, before moving on to our improvements.

3.1 Certificates in PBFT
In Castro’s PBFT protocol, certificates consist of a number
of matching messages sent by nodes. Since all messages are
cryptographically signed by their respective sender, they

Harald Böhm and Tobias Distler

cannot be forged. As a result, replicas can use certificates
to prove to each other that a sufficient number of correct
replicas agree on a specific piece of information. With re-
gard to memory demand, this means that replicas will store
most incoming messages as-is in a corresponding certificate,
provided they deem the message valid.

3.2 Compressed Certificates
Certificates, by definition, are a set of matching messages
from nodes and, therefore, they are in parts identical. More
specifically, matching messages all share the information E

that replicas want to agree on. As a result, it is possible to
compress certificates by storing matching values transported
in messages only once, instead of storing every message in
its entirety. Since there are at most 5 faulty replicas, there
can be up to 5 + 1 different values E of size |E |, before nodes
agree on one of them. Additionally, for each node 8 agreeing
on a value, the message’s signature f8 has to be persisted.
However, a replica has to receive at most 5 + 2 different
messages, before it knows which value E it should consider
correct. Therefore, it can then drop all signatures not related
to that value. We define |f | to be the size of a signature in
bytes.

Let C be a quorum certificate, that is, a certificate requiring
25 + 1 matching messages in order to be considered com-
plete. Then the worst-case memory demand of C and its
compressed form C2><?A4BB43 can be expressed as follows:

� = (25 + 1) · |E | + (25 + 1) · |f | (1)
�2><?A4BB43 = (5 + 1) · |E | + (25 + 1) · |f | (2)

This shows that the optimization can reducememory demand
by up to 5 · |E | bytes. In actual implementations, however,
this difference can be even larger, because messages typi-
cally also have additional meta-data associated with them. In
TinyBFT’s reference implementation for example, the size of
a commit message excluding its signature is 32 bytes. How-
ever, its payload size |E |, consisting of a sequence number
and a view number, is only 16 bytes.

3.3 Replacing Commit Certifictes
At the end of PBFT’s three-stage agreement protocol, repli-
cas gather 25 + 1 matching commit messages of a fixed size
M2><<8C to form a commit certificate. After receiving enough
matching messages, nodes are allowed to execute the cor-
responding request. Hence, the original memory demand
model in [7] describes a commit certificate’s memory de-
mand as:

�2><<8C = (25 + 1) · M2><<8C (3)

However, when taking a closer look at the protocol, it be-
comes clear that commit certificates gathered by nodes are
never propagated in order to prove to other replicas that a

request proposal has been committed. Hence, it is unnec-
essary for replicas to keep commit messages in their log.
Instead, the relevant information is: (1) the value E associ-
ated with the message, that is, sequence number and view of
the corresponding pre-prepare message. (2) the number of
matching messages received, and (3) which replica already
has a message in the certificate, in order to prevent faulty
replicas from trying to be counted more than once.

Using this information, we can now construct an alterna-
tive data structure to replace commit certificates entirely.The
message’s value is stored as is. Determining the number of
matching messages requires one counter per possible value
stored. The minimum size of it depends on the number of
replicas. If RAM is byte-addressable, the minimum size for
this counter has to be

⌈
;>62 (35 +1)+1

8

⌉
. Finally, in order to track

replicas that already responded, one bit of information per
replica is sufficient. Hence, the minimum size is

⌈
35 +1
8

⌉
. Since

there can be up to 5 faulty replicas and commit messages
may arrive before the replica has received the correspond-
ing pre-prepare, we have to assume that there can be up to
5 + 1 different values that have to be cached. Putting all of
this together, the new data structure reduces the memory
demand of �2><<8C as follows:⌈

35 + 1

8

⌉
+ (5 + 1) (|E | +

⌈
;>62 (35 + 1) + 1

8

⌉
) (4)

As already mentioned briefly in Section 3.2, a commit mes-
sage in TinyBFT’s reference implementation is 32 bytes large
and its payload |E | = 16 bytes. Assuming that signatures
are generated using RSA [12] with key sizes of 2048-bit,
which is the minimum size recommended by NIST [2], then
M2><<8C = 288 bytes. Inserting these values into Equation
3, we get C2><<8C = 864. Using Equation 4 we see that the
alternative data structure only requires 35 bytes to store the
same information, an improvement of 96%.

4 CONCLUSION
This paper has described two optimizations that can be used
to reduce the memory demand of certificates in PBFT. Using
them, we were able to reduce the upper bound for memory
demand originally shown in [7].

REFERENCES
[1] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin. 2020. Sync Hot-

Stuff: Simple and Practical Synchronous State Machine Replication.
In Proceedings of the 41st Symposium on Security and Privacy (SP ’20),
106–118.

[2] E. Barker and Q. Dang. 2001. Recommendation for Key Management.
Part 3: Application-Specific Key Management Guidance. Tech. rep.
National Institute of Standards and Technology, Washington, D.C.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-5
7Pt3r1.pdf.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf

Memory-Efficient Byzantine Fault-Tolerant Replication for Highly Resource-Constrained Systems

[3] J. Behl, T. Distler, and R. Kapitza. 2015. Consensus-oriented paral-
lelization: how to earn your first million. In Proceedings of the 16th
Middleware Conference (Middleware ’15), 173–184.

[4] C. Berger, H. P. Reiser, F. J. Hauck, F. Held, and J. Domaschka. 2022.
Automatic integration of BFT state-machine replication into IoT
systems. In Proceedings of the 18th European Dependable Computing
Conference (EDCC ’22), 1–8.

[5] A. Bessani, E. Alchieri, J. Sousa, A. Oliveira, and F. Pedone. 2020.
From Byzantine replication to blockchain: consensus is only the
beginning. In Proceedings of the 50th International Conference on
Dependable Systems and Networks (DSN ’20), 424–436.

[6] A. Bessani, J. Sousa, and E. E. P. Alchieri. 2014. State machine replica-
tion for the masses with BFT-SMaRt. In Proceedings of the 44th Inter-
national Conference on Dependable Systems and Networks (DSN ’14),
355–362.

[7] H. Böhm, T. Distler, and P. Wägemann. 2024. TinyBFT: Byzantine
Fault-Tolerant Replication for Highly Resource-Constrained Embed-
ded Systems. In Proceedings of the 30th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’24).

[8] E. Buchman. 2016. Tendermint: Byzantine Fault Tolerance in the Age
of Blockchains. PhD thesis. University of Guelph.

[9] M. Castro and B. Liskov. 1999. Practical Byzantine fault tolerance. In
Proceedings of the 3rd Symposium on Operating Systems Design and
Implementation (OSDI ’99), 173–186.

[10] Espressif Systems. 2023. ESP32-C3 Series Datasheet. Version 1.4.
[11] A. Loveless, R. Dreslinski, B. Kasikci, and Linh Thi Xuan Phan. 2021.

IGOR: accelerating Byzantine fault tolerance for real-time systems
with eager execution. In Proceedings of the 27th Real-Time and Em-
bedded Technology and Applications Symposium (RTAS ’21), 360–373.

[12] Ronald L Rivest, Adi Shamir, and Leonard Adleman. 1978. A method
for obtaining digital signatures and public-key cryptosystems. Com-
munications of the ACM, 21, 2, 120–126.

	Abstract
	1 Introduction
	2 Problem Statement
	3 Approach
	3.1 Certificates in PBFT
	3.2 Compressed Certificates
	3.3 Replacing Commit Certifictes

	4 Conclusion

